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A discrete-time infectious disease model for
global pandemics
Abdul-Aziz Yakubua,1

The ongoing global pandemic of coronavirus
(COVID-19), an infectious disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has raised concerns about the effectiveness
of current preventive pharmaceutical and nonphar-
maceutical interventions (1). In addition, the upward
global trends in the numbers of emerging and ree-
merging infectious diseases, as evidenced by the
reported cases of Ebola, Zika, Chikungunya, SARS,
West Nile virus, and other serious infections, have
dramatically expanded the demand for mathemati-
cal models of infectious diseases across multiple
entities that include the pharmaceutical industry,
health and medical organizations, and local and
international governments, and that span the public
and private sectors (2, 3). With this increased
demand comes the opportunity to meaningfully
reassess the variety of existing mathematical epi-
demic models. Such an assessment is an important
step in capturing the ways in which these models
contribute to the understanding of infectious dis-
ease surveillance data and the policies, programs,
and practices that emerge from these data (1).

Mathematical models of infectious diseases are
powerful tools that are used in extending societal
understanding and forecasting of disease transmis-
sion dynamics and for evaluating the effects of dif-
ferent interventions and changing on-the-ground
conditions for epidemiological outcomes. Thus, it is
important that we make use of the full range of the
available models and disease data to study disease
dynamics. Mathematical models can be classified
based on how they model variability, chance and
uncertainty, time, space, and the structure of the
population. On the data side, disease surveillance
data are reported at discrete time intervals, for
example, daily, weekly, monthly, or yearly disease
incidence or number of disease-induced deaths (1).
However, many of the existing infectious disease
models are continuous-time models that implicitly
assume the availability of a continuous stream of

these data. While these models have produced use-
ful information, insights, and interventions, it may be
worthwhile to consider discrete-time infectious dis-
ease models and other models that are more closely
aligned with the discrete nature of disease surveil-
lance data.

The discrete-time version of the Kermack–McKendrick
model, a system of difference equations introduced in
ref. 1, is more compatible with the data that are avail-
able to the modeling community. As a result, parame-
ters of the model can be related directly to disease
surveillance data without additional model assump-
tions. Furthermore, the discrete-time model in ref. 1 is
very easy to implement computationally. To investi-
gate the factors that determine both magnitude of
the “bell-shaped geometry” associated with most dis-
ease epidemics and their termination within a given
population (see Fig. 2), in 1927, Kermack–McKendrick
introduced an age-of-infection model (4), that is, a
model in which the infectivity of an individual depends
on the time since the individual became infective. To
describe the classic Kermack–McKendrick model, we
consider a population that is partitioned into the fol-
lowing three nonintersecting classes by an infectious
disease: the class of susceptible individuals or suscep-
tibles (S), infected individuals or infectious (I), and
recovered individuals or removed (R) (4, 5). Fig. 1 is
the flowchart of the Kermack–McKendrick SIR epi-
demic model. Childhood diseases, such as chicken-
pox, smallpox, rubella, and mumps, are modeled by
SIR disease models. To account for how the number
of individuals in each of the three classes changes
continuously, the classic Kermack–McKendrick model
was formulated as an initial value problem for a

Fig. 1. Flowchart for the classic Kermack–McKendrick
SIR model.
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system of continuous-time ordinary differential equations (Newto-
nian derivative). The deterministic continuous-time SIR model
framework was a significant milestone in the development of sub-
sequent infectious disease models.

The process of model construction and parametrization
requires model type choices and assumptions, and the
Kermack–McKendrick model is based on the following three
assumptions: 1) There are no births and deaths. 2) There are no
emigrations and migrations. 3) All recovered individuals have
complete immunity and cannot get reinfected. These assump-
tions are not universal, and thus the Kermack–McKendrick
model has a distinctive asymptotic dynamics. In epidemiology,
threshold conditions for the occurrence of disease outbreaks
are common. The Kermack–McKendrick model predicts that dis-
ease prevalence decreases monotonically in the population
when the model's epidemic threshold parameter value is
smaller than one. However, when the epidemic threshold
parameter value is bigger than one, the model predicts the
occurrence of a sudden increase in disease prevalence to a
peak which is followed by a continuous decline. This “bell-
shaped geometry” is a signature for classic disease epidemics
(Fig. 2) (4, 5).

The discrete-time version of the Kermack–McKendrick model
has several additional advantages. These include replication of
the “bell-shaped geometry” of classic epidemic events (1). Fur-
thermore, discrete-time infectious disease models are especially
appealing for the mathematical description of a disease epi-
demic process, since such a process can be conceptualized as
evolving through a set of discrete-time disease events. Notwith-
standing its advantages, there is room for the inclusion of

additional relevant real-world features that would help us con-
trol and prevent disease infections. For example, modelers have
used the Kermack–McKendrick model to study influenza and
other diseases; however, the model does not account for dis-
ease intervention protocols such as vaccination, social distanc-
ing, and mask wearing (6, 7). Furthermore, the rapid global
spread of COVID-19 currently underway is merely the latest
example in a long line of diseases that have been transported
from their endemic region and have touched off epidemics in
new populations (3, 8). Thus, adding relevant features to the
more flexible and easier to implement computationally discrete-
time version of the Kermack–McKendrick model framework
could potentially overcome features of this model that limit our
capacity to control and prevent global disease pandemics.
Specifically, such model extensions could include social and
demographic characteristics of populations, including age, gen-
der, race, geographical locations, and so on. These modified
models and their extensions could potentially increase the pre-
cision of our model predictions in the important work of inform-
ing public health preparedness strategies for future large-scale
disease outbreaks and the ongoing global COVID-19 pan-
demic. Dynamic compartmental models, such as the classic
Kermack–McKendrick model and the discrete-time version, are
also able to account for the indirect protection of nonvaccinated
susceptibles against disease infections (9, 10). The ensemble of
data-driven models, such as discrete-time infectious disease
models or models with time steps that can be adjusted to the
time interval between real disease data points, are well posi-
tioned to capture and reflect the actual disease trajectories in
populations.
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Fig. 2. Left shows prevalence decreasing monotonically. Right shows increasing prevalence to a peak before decreasing monotonically.
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